

Report on TAO and Multigrid Methods for Optimization

http://www.mcs.anl.gov/lans

Mathematics and Computer Science Division Argonne National Laboratory

Research Participants

- ♦ Steve Benson (TOPS/CCA)
- ♦ Lois Curfman McInnes (CCA)
- ♦ Jorge J. Moré (TOPS)
- ◆ Todd Munson (TOPS)
- ♦ Jason Sarich (TOPS)
- ♦ PETSc developing team
- ◆ PDE/Optimization seminar participants

Outline

- ♦ TAO
 - Introduction
 - New developments and future plans
- ♦ Multigrid Methods
 - Optimal control problem
 - Benchmark problems
 - Grid sequencing preliminary results

TAO

Definition (Webster) Chinese (Beijing) dào, 1736.

- 1. The process of nature by which all things change and which is to be followed for a life of harmony.
- 2. Toolkit for advanced optimization

Mantra

Design and implementation of algorithms and component-based software for the solution of large-scale optimization applications on high-performance architectures.

- ♦ Component-based interaction
- ♦ Leverage of existing parallel computing infrastructure
- ♦ Reuse of external (preconditioners, linear solvers ...) toolkits

TAO: New Developments and Future Plans

New Developments

- ♦ Release of Version 1.3
- ♦ ESI interface (compliance with Trilinos)
- ♦ Development of BLMVM
- ♦ Nonlinear complementarity solvers
- ♦ TAO/CCA demo at SC2000 (www.mcs.anl.gov/cca/cca_demos.html)

Future Plans

- ♦ Nonlinear least squares solvers
- ♦ Integration of TAO into MPQC and NWChem
- ♦ Use of automatic differentiation tools (ADIC) in TAO

TAO Performance of BLMVM: Plate Problem

Cray T3E (NERSC)

 $n = 2.56 \cdot 10^6 \text{ variables}$

TAO: CCA Interactions

TAO

www.mcs.anl.gov/tao

Version 1.3 (December 2001)

- ♦ Source Code
- ♦ Documentation
- ♦ Installation instructions
- ♦ Tutorials (NERSC, September 2000)
- ♦ Example problems
- ♦ Performance results
- ♦ Supported architectures

Optimal Control Problems

The optimal control problem requires minimizing

$$f_c[t_l, x(t_l), t_u, x(t_u)]$$

subject to the state equations,

$$x'(t) = f[t, x(t), u(t)], t \in [t_l, t_u],$$

boundary conditions on the states, and the control constraints,

$$u(t) \in U, \qquad t \in [t_l, t_u].$$

Note. The solution is bang-bang if for some interval I,

$$u(t) \in \partial U, \qquad t \in I$$

The COPS Benchmarks

COPS has optimal control and parameter estimation problems, with descriptions of the formulations as optimization problems and numerical results for several optimization solvers.

- ♦ Robot arm
- Particle steering
- ♦ Goddard rocket
- ♦ Hang glider
- ♦ Marine population dynamics
- ♦ Flow in a channel
- Methanol to hydrocarbons
- \diamond Isomerization of α -pinene

Optimal Control: Computational Issues

- ♦ The optimization approach is relatively recent
- ♦ The optimization approach overcomes many of the difficulties from the Pontryagin maximum principle
- ♦ The optimization approach applies to sliding and chattering controls.
- ♦ Algorithms have a wide range in performance possibly due to the lack of good initial guesses.
- ♦ The number of iterations of current optimization algorithms is mesh dependent.
- ♦ Techniques for dealing with the lack of smoothness in the state and the control are ad-hoc.

Example: Minimal Surface with Obstacles

Number of active constraints depends on the height of the obstacle. The solution $v \notin C^1$. Almost all multipliers are zero.

Note. See Bank, Gill, and Marcia (2001) for numerical results with an interior point method.

Benchmark Problems

- ♦ Variational problems with bounds on the control
- ♦ Convex problems
- Unique solutions
- ♦ Five different problems
- ♦ Three different choices of parameters per problem
- ♦ Cost per variable is constant
- \diamond Target problems with 10^5 variables

Goal. Develop algorithms with bounded cost per grid point

Grid Sequencing Issues

- ♦ How much does grid-sequencing save?
- ♦ Does grid-sequencing resolve the convergence issue?
- \diamond What is the order of convergence of $f(x_h^*)$?
- \diamond What is the order of convergence of x_h^* ?
- \diamond How does the number of active constraints at x_h change?
- \diamond What tolerance do we use to obtain x_h ?
- ♦ What is the impact on iterative methods on these results?

Grid-Sequencing Performance

Time improvement ratios for TRON (n = 101, 761)

Grid-Sequencing Performance

Number of iteration for TRON, levels 5, 6, 7.

Order of convergence for $f(x_h^*)$

The order of convergence is defined as the p > 0 such that

$$f(x_h^*) \sim f(x^*) + \alpha h^p, \qquad h \to 0$$

where h = 1/n and n is the number of variables.

Order of convergence for x_h^*

The order of convergence is defined as the p > 0 such that

$$||x_h^*||_2 \sim ||x^*||_2 + \alpha h^p, \qquad h \to 0$$

where h = 1/n and n is the number of variables.

